Algebraic generalization of quantum statistics

نویسندگان

  • N. I. Stoilova
  • J. Van der Jeugt
چکیده

Generalized quantum statistics such as para-Bose and para-Fermi statistics are related to the basic classical Lie superalgebras B(0|n) and Bn. We give a quite general definition of “a generalized quantum statistics associated to a Lie superalgebra G”. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is determined by a set of root vectors (the creation and annihilation operators of the statistics) and the set of algebraic relations for these operators. Then we give a complete classification of all generalized quantum statistics associated to the Lie superalgebras An, Bn, Cn, Dn, G2, F4, E6, E7, E8, A(m|n), B(m|n), C(n), D(m|n), G(3), F (4) and D(2, 1;α).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie algebraic generalization of quantum statistics

Para-Fermi statistics and Fermi statistics are known to be associated with particular representations of the Lie algebra so(2n+1)≡ Bn. Similarly paraBose and Bose statistics are related with the Lie superalgebra osp(1|2n)≡ B(0|n). We develop an algebraical framework for the generalization of quantum statistics based on the Lie algebras An, Bn, Cn and Dn.

متن کامل

X iv : m at h - ph / 0 60 60 49 v 1 2 0 Ju n 20 06 REPRESENTATIONS AND PROPERTIES OF GENERALIZED A r STATISTICS

A generalization of A r statistics is proposed and developed. The generalized A r quantum statistics is completely specified by a set of Jacobson generators satisfying a set of triple algebraic relations. Fock-Hilbert representations and Bargmann-Fock realizations are derived.

متن کامل

A Strong Regular Relation on ?-Semihyperrings

The concept of algebraic hyperstructures introduced by Marty as a generalization of ordinary algebraic structures. In an ordinary algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. The concept of ?-semihyperrings is a generalization of semirings, a generalization of semihyper‌rings and a generalizat...

متن کامل

Quasi-particles in Fractional Quantum Hall Effect Edge Theories

We propose a quasi-particle formulation of effective edge theories for the fractional quantum Hall effect. For the edge of a Laughlin state with filling fraction ν = 1 m , our fundamental quasi-particles are edge electrons of charge −e and edge quasi-holes of charge + e m . These quasi-particles satisfy exclusion statistics in the sense of Haldane. We exploit algebraic properties of edge electr...

متن کامل

Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g). They have the same FRT generators l± but a matrix braided-coproduct ∆L = L⊗L where L = l+Sl−, and are se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007